15 local extrema part 2

Thursday, October 22, 2020 12:34 PM Let's consider only minima because the situation for maxima is a nalogous. Prop 4.3/4.4 Let E be a normed vector space and let $J: \mathcal{N} \rightarrow \mathcal{R}$ be a function, with N some open subset of E. If J is differentiable in M, if J has a second derivative D²J(4) at some pt uEM, and if J has a local minimum at u then $\mathcal{D}^2 J(u)(w, w) \ge 0 \quad \forall w \in \mathcal{E}.$ poort. Let wEE, w≠0. For t small enough, uttwE.N and J(ut tw) = J(u), so there is an open interval I=R s.t. ut twender and $\mathcal{J}(u+tw) \ge \mathcal{J}(w)$. $\forall f \in \mathbb{I}$. Using the Taylor-Young Formula, and that IJ(u)=0, $0 \leq J(u+tw) - J(u) = \frac{t^2}{2} D^2 J(u)(w,w) + t^2 ||w||^2 \epsilon(tw),$ with $\lim_{t \to 0} E(t_w) = 0$ $\implies p^2 J(u)(\boldsymbol{w}, w) \geq 0.$ But this is true I w EE, proving the claim. 9/) Note of course that this theorem only goes one way. (e.g. f(x) = x 3) Aside: If E= Rn, this means that a necessary condition for having a local minimum is that the Hessian VI(u) is SPP. We've only talked about necessary conditions so far. Let's give some Sufficient conditions. The 4.3/4.5 Let E be a normed vector space, let $J: \Omega \rightarrow \mathbb{R}$ be a function with NEE open, and assume that J is differentiable

Item Terry Teo Let E be a normed view grin, in the set is
a function with
$$\Omega \leq E$$
 open, and assume that T is differentiable
in Ω and $d J(n) = 0$ at some of $u \in N$. Then
(1) If $P^2 J(u)$ exists and if there is some $d \in R$ s.t. $d > 0$
and $D^2 J(n) (u, u) \geq d || u ||^2$ for all $u \in E$,
then \overline{u} has a shrift local minimum of u .
(2) If $P^2 J(u)$ exists for all $v \in \Omega$ and if $J = 1/l$ $B \leq \Omega$
centered at $v = s.t$. $D^2 J(u) (u, u) \geq 0$ $\forall v \in B$ and $u \in E$,
then T has a local minimum of u .
(2) $D(u+u) - J(u) = \frac{1}{2} D^2 J(u) (u, u) \geq 0$ $\forall v \in B$ and $u \in E$,
then T has a local minimum of u .
 $proof.$ (1) By the Taylor "Young formula, $(Then 3.6)$
 $J(u+u) - J(u) = \frac{1}{2} D^2 J(u) (u, u) + || u ||^2 E(u)$
 $\geq (\frac{1}{2} x + E(u)) || u ||^2$, $u \neq 1$ $|| u || c$.
Thus, for small enough $r > 0$, $| f(u) || < \frac{1}{2} \forall u = s.t$. $|| u || c$.
Then $J(u+u) > J(u) = \forall u+u \in B$, so $The u = stript (cond min et u)$.
(2) By the Taylor "Macharin formula, $(Then 3.8)$ (generited mean veloce-theorem)
 $\forall u+u \in B$, $J(u+v) = J(u) + \frac{1}{2} D^2 J(v) (u, u) \geq J(u)$ for some $v \in (u, u+w)$.
In the traylor "Macharin formula, if $h = stript (cond min et u)$.
(2) By the Taylor "Macharin formula, $(Then 3.8)$ (generited mean veloce-theorem)
 $\forall u+u \in B$, $J(u+v) = J(u) + \frac{1}{2} D^2 J(v) (u, u) \geq J(u)$ for some $v \in (u, u+w)$.
In the traylor "Macharin formula, if $h = stript (u, u, u) \geq J(u)$ for some $v \in (u, u+w)$.
The tray of F for any symmetric matrix A , $F A$ is positive definite, then,
 $J = d > 0$ s.t. $x TAx \geq d || x ||^{2} \forall x \in R^{n}$.
part. Fick any norm in R^{n} .
part. Fick any norm in R^{n} .

Since the unit sphere
$$\int \{x \in \mathbb{R}^n \mid x \in \mathbb{R}^n\}$$

since the function $f(x) \ge x^T A \ge \neq 0$ on S^{n-1} , f has a minimum $d \ge 0$.
Thus, $x^T A x \ge d$ $\forall \||x|| \le 1$ (because $x \ge ||x|| \cdot \frac{x}{\|-1|}$)
 $\Longrightarrow x^T A x \ge d ||x||^2 \quad \forall x \in \mathbb{R}^n$.

Thus, this shows that for quadratic forms that are symmetric por lef.,

Thus, this shows that for quadratic forms that are symmetric por lef., there exists a strict local minimum.

Def. 4.6/4.3 Given a function
$$J: D \rightarrow R$$
 as before, a point util is a
nondegenerate critical pt if $dJ(u) > 0$ and if the Hessian matrix
 $\nabla^2 J(u) = \begin{pmatrix} \frac{\partial^2 J}{\partial x_i^2}(u) & \frac{\partial^2 J}{\partial x_i^2}(u) & \cdots & \frac{\partial^2 J}{\partial x_i \partial x_i}(u) \\ \frac{\partial^2 J}{\partial x_i^2}(u) & \frac{\partial^2 J}{\partial x_i^2}(u) & \cdots & \frac{\partial^2 J}{\partial x_i \partial x_i}(u) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 J}{\partial x_i \partial x_i}(u) & \frac{\partial^2 J}{\partial x_i^2}(u) & \cdots & \frac{\partial^2 J}{\partial x_i^2}(u) \end{pmatrix}$ is invertible.
(note that the Hessian is always symmetric)

Prop. 4.547 Let $J: \mathcal{N} \to \mathcal{R}$ be defined on an open subset $\mathcal{N} \subseteq \mathcal{R}^n$. If J is differentiable in \mathcal{N} and if $u \in \mathcal{N}$ is a non-tegenerate critical pt. s.t. $\nabla^2 J(u)$ is positive definite, then J has a strict local min at u.

Remark: Can generalize to infinite-dimensional spaces. Let
$$F$$
 be a Banack space,
and let $E' = \mathcal{L}(E; R)$ (continuous linear forms).
Let $Q: E \times E \Rightarrow R$ be $Q \in \mathcal{L}(E, E; R)$ (continuous billinear map),
giving us a mop $\Phi: E \to E'$ by $\overline{\mathcal{I}}(u) = \mathcal{L}_u$, where $\mathcal{L}_u \mathcal{L}_v) = \mathcal{L}(u, v)$
 Q is non-begenerate IFF $\overline{\Phi}: E \to E'$ is an isonorphism of Banach spaces.
Given $J: \mathcal{N} \to R$ differentiable in \mathcal{N}_v , F $\mathcal{D}^2 \overline{J}(u)$ exists for some $u \in \mathcal{N}_v$,
then u is a non-begenerate of \mathcal{I} . If $IJ(u)=\mathcal{D}$ and $\mathcal{D}^2 \overline{J}(u)$ is non-begenerates
 $\mathcal{D}^2 \overline{J}(u)$ is p-s def. if $\mathcal{D}^2 \overline{J}(u)(w,w) > \mathcal{V}$ $\forall w \in E - \mathcal{E} \circ \mathcal{F}$.

Def.
$$4.8/4.5$$
 If C SE is nonempty and convex, a function $f: C \to R$ is $real vector space E, a subset $C = E$ is $convex$
 $[f = cither C = \emptyset \ or \ i\delta \ \forall u, v \in C, \ (I-\lambda)u \ \forall \lambda v \in C \ for \ O \leq \lambda \leq I.$$

but 48/45 If C SE is array by and cover, a function
$$f: C \rightarrow \mathbb{R}$$
 is
convex \overline{R} $\forall u, v \in C$, $f((1+\lambda)u + \lambda v) \leq (1-\lambda)f(u) + \lambda f(v)$, $0 \leq \lambda \leq l$.
shifty cover \overline{R} $\forall u, v \in C$, $u \neq v$, $f((1+\lambda)u + \lambda v) < (1-\lambda)f(u) + \lambda f(v)$.
Petrue: The epigraph epiff) of a function $f: A \rightarrow \mathbb{R}$, $A \leq \mathbb{R}^n$, is a
subset of \mathbb{R}^{n+1} defeed as
 $epiff) = \frac{1}{2}(x, y) \in \mathbb{R}^{n+1} | f(x) \leq y, x \in A^{\frac{3}{2}}$.
A function $f: C \rightarrow \mathbb{R}$ is convex if f epiff) is convex.
We call a function $f: C \rightarrow \mathbb{R}$ is convex if f a normed vector space.
Let $U: A \rightarrow \mathbb{R}$, $A \leq E$ on open induct of a normed vector space.
Let $U: A \rightarrow \mathbb{R}$, $A \leq E$ on open induct of a normed vector space.
Let $U: A \rightarrow \mathbb{R}$, $A \leq E$ on open induct of u have a boal and how in u
 $u, r.t.$ U , then
 $d \int (u) (v - u) \geq 0$ $\forall v \in U$.
Proof. Let $v = v = v = u$ be a contrary $v \neq h$ in U .
By converting of $(I, u + t = U = V = U)$.
 $f(u) = \sqrt{1 + (u + U)} = 1 = \sqrt{1 + (u)} + \frac{1}{2} = (1 - u) + \frac{1}{2} = 0$.
 $(b \leq 1)$ $\Rightarrow T(u + t = -T(u) = t = \frac{1}{2} = (1 - u) + \frac{1}{2} = 0$.
 $(b \leq 1)$ $\Rightarrow T(u + t) = -T(u) = t = \frac{1}{2} = 0$.
Surprose $d = \sqrt{1 + (u)} + \frac{1}{2} = 0$.
 $Surprose $d = \sqrt{1 + (u)} + \frac{1}{2} = 0$ $a = \sqrt{1 + (u)} = 1$.
 $T = \frac{1}{2} = \sqrt{1 + (u)} + \frac{1}{2} = 0$.
 $Surprose $d = \sqrt{1 + (u)} + \frac{1}{2} = 0$ $a = \sqrt{1 + (u)} + \frac{1}{2} = 0$.
 $Surprose $d = \sqrt{1 + (u)} + \frac{1}{2} = 0$ $a = \sqrt{1 + (u)} = 1 = 0$.
 $T = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = 0$.
 $T = \frac{1}{2} = \frac{1}{2} = 1 = 0$.
 $T = \frac{1}{2} = \frac{1}{2} = 1 = 0$.
 $T = \frac{1}{2} = 1 = 0$.$$$

Thus, we can use convexity of U as a substitute for using
Lagrange multipliers, though up now have a inequality instal OF a equality.
Concllary 4:1/- If U = E is a subspace, if d J(u) exists and J has a
local minimum w.r.t. U, then
$$d J(u)(w) = 0$$
 $\forall w \in U$.
Prop 4:6/4:9 (Convexity and first derivative)
Let $f: A \rightarrow R$ be a function Lifternhiable on an open subset $N = E$, where
E is a normed vector space, and let $U = R$ be a convex subset.
(1) f is convex on U iff $f(v) \ge f(u) + df(u)(v-u)$ for all $u, v \in U$.
(2) f is strictly convex on U iff $f(v) \ge f(u) + df(u)(v-u)$ $\forall v, v \in U$, $u \neq v$.
(4, f(u))
(4, f(u))
(4, f(u))
(5, f(u)) + df(u)(v-u))
(5, f(u)) + df(u)(v-u))
(6, f(u)) + df(u)(v-u))
(7, f(u)) + df(u)(v-u))
(9, f(u)) + df(u)(v-u)

$$f((1-\lambda)u + \lambda v) = (1-\lambda) f(u) + \lambda f(v).$$

$$f((1-\lambda)u + \lambda v) - f(u) \leq \lambda f(v) - \lambda f(u)$$

$$f((1-\lambda)u + \lambda v) - f(u) \leq f(v) - f(u)$$

$$f((1-\lambda)u + \lambda v) - f(u) \leq f(v) - f(u)$$

=)
$$\int f(u)(v-u) = \lim_{\lambda \to 0} \frac{f((-\lambda)u+\lambda v) - f(u)}{\lambda} \leq f(v) - f(u).$$

Consider
$$f(v) \ge f(u) + df(u)(v-u) + u, v+od$$

Then $\forall u \neq v, 0 \le \lambda \le l$, we have
(1) $f(v) \ge f(v + \lambda(u-v)) - \lambda df(v + \lambda(u-v))(u-v) \quad (let v=v, u=v + \lambda(u-v)))$
(2) $f(u) \ge f(v + \lambda(u-v)) + (l-\lambda) df(v + \lambda(u-v))(u-v) \quad (let v=u, u=v + \lambda(u-v)))$

Then
$$(1-\lambda)(1) + \lambda(2)$$
 gives
 $(1-\lambda)f(v) + \lambda f(u) \ge f(v + \lambda(u-v)) = f((1-\lambda)v + \lambda u).$

$$(1-\lambda)f(v) + \lambda f(u) \ge f(v + \lambda (u-v)) \ge f((1-\lambda)v + \lambda u).$$

=) f is convex.

(4) f f the convex subset U in (3) is open, then the above condition is equivalent to d J(u) = 0.

proof sketch? Repeated application of definitions and convexity. Punchline is that for convex functions, local and global minima correspond.

Ex. 4.7 /- Consider least squares solution to
$$A \ge b$$
.
i.e. Find arg min $|| Av - b ||_2^2$.
Consider $J(v) = \frac{1}{2} || Av - b ||_2^2 - \frac{1}{2} || b ||_2^2$, a quetratic function.
 $= \frac{1}{2} (Av - b)^T (Av - b) - \frac{1}{2} b^T b$
 $= \frac{1}{2} (v^T A^T - b^T) (Av - b) - \frac{1}{2} b^T b$
 $= \frac{1}{2} v^T A^T Av - v^T A^T b$

$$= \int_{A} JJ(\mathbf{u}) = A^{T}A\mathbf{u} - A^{T}b.$$
Since $A^{T}A$ is pos semidefinite, J is convex, then the last theorem implies that the (globall minima of J are solutions to $A^{T}A\mathbf{u} - A^{T}b = 0$
that the (globall minima of J are solutions to $A^{T}A\mathbf{u} - A^{T}b = 0$
Recall SVD $A \in VOU^{T}$ and $A^{t} = UD^{t}V^{T}$. Let $\mathbf{u} = A^{t}b$.
Then $UDV^{T}VDU^{T}UD^{T}VTb = UDV^{T}b = A^{T}b$.
Conclusion: We want to find zeros of $JJ: \mathcal{N} \rightarrow E'$, as that fells us
a lot about minima. Next the generalizations of Newton's method.